

Metaheuristics for the vehicle routing problem

Osman's Simulated Annealing Algorithm's

Agenda

- VRP The Vehicle Routing Problem
- Heuristics for routing problems
- Simulated Annealing
- Osman's SA
- Computational Experiments
- Questions

VRP – The Vehicle Routing Problem

- Problem introduced by Dantzig and Ramser (Management Science, 1959)
- NP-hard
- Generalization of the traveling salesman problem
- Has multiple applications
- Exact algorithms: relatively small instances
- In practice heuristics are used
- Variants:
 - heterogeneous vehicle fleet (Gendreau et al., 1999)
 - time windows (Cordeau et al., VRP book, 2002)
 - pickup and deliveries (Desaulniers et al., VRP book, 2002)
 - periodic visits (Cordeau et al., Networks, 1997)
- Practical Problems
 - Delivery of consumer products to grocery stores
 - Collection of money from vending machines and telephone coin boxes
 - Delivery of heating oil to households

VRP – The Vehicle Routing Problem

- Structure:
 - Depot
 - m (or at most m) identical vehicles based at the depot
 - n customers
 - Distance (cost, travel time) matrix (cij)
 - q_i: demand of customer i
 - Q: vehicle capacity
 - L: maximal route length (duration)

- 1. Starting and ending at the depot
- 2. Visiting each customer exactly once
- 3. Satisfying the capacity constraint
- 4. Satisfying the maximal length constraint
- 5. Of minimal total cost

Heuristics for routing problems

- Classical-Algorithms:
 - Savings (Clarke, Wright, Operations Research, 1965)
 - Sweep (Gillett, Miller, Operations Research, 1974)
 - Cluster first, route second (Fisher, Jaikumas, Net- works, 1981)
 - Intra-route improvement methods (TSP heuristics)
 - Inter-route improvement methods (λ-interchanges, Osman, 1993)
- Metaheuristics
 - Local Search
 - Simulated Annealing
 - Deterministic Annealing
 - Tabu-Search
 - Population Search
 - Genetic Algorithms
 - Learning Mechanisms
 - Neural networks
 - Ant colony systems

	0	1	2	3	4	5	6
0	-	20	30	30	20	50	35
1		-	30	45	35	65	45
2			-	30	45	75	55
3				-	35	70	60
4					-	35	25
5						-	25
6							-

	1	2	3	4	5	6
1	-	20	5	5	5	10
2		-	30	5	5	10
3			-	15	10	15
4				-	35 ^	30
5					-	60
6						-

SA – Simulated Annealing

- Problemspecific parameters
 - Feasible solution space
 - Neighbours
 - Evaluation
- Generic parameters
 - Temperature
 - Cooling Schedule
 - Termination condition

- Doesn't have to return a better point, return an accepted solution
- Acceptance based on the current temperature T
- T updated periodically
- Cooling schedule is key to succes
 - ► High temperature → High probability of acceptance
 - Cold → Local search
 - Warm phase is effective phase of SA

Osman's SA

- Uses better starting solutions
- Some parameters of the algorithm are adjusted in a trial phase
- Richer solution neighborhoods are explored
- Cooling schedule is more sophisticated
 - Not decreased continuously nor as a step function
 - Decreases continously as long as the current solution is modified
 - Whenever $x_t+1 = x_t$, the temperature is halved or replaced by the temperature at which the incumbent was identified
- Neighborhood structure uses a λ-interchange generation mechanism
 - Two routes p and q are selected,
 - Two subsets of customers S_p and S_q (one from each route)
 - Satisfying $|S_p| \le \lambda$ and $|S_q| \le \lambda$
 - Operation swaps the customers of S_p with those of S_q as long as this is feasible
- 2 phases

Osman's SA: Phase 1

- Step 1: initial solution
 - Generate an initial solution
 - By means of Clarke and Wright algorithm (Savings algorithm)
- Step 2: descent
 - Search the solution space using the λ-interchange scheme
 - Implement an improvement as soon as it is identified
 - Stop whenever an entire neighborhood exploration yields no improvement

Osman's SA: Phase 2

- Step 1: initial solution
 - Use solution of Phase 1 or of Clarke and Wright algorithm
 - Perform a complete neighborhood search using the λ-interchange
 - Record Δ_{max} and Δ_{min} ; Compute β
 - $\Theta_1 := \Delta_{max}, \ \delta := 0, \ k := 1, \ k_3 := 3, \ t := 1, \ t^* := 1$
- Step 2: next solution
 - \triangleright Exploring the neighborhood of xt using λ-interchanges
 - When a solution x.with $f(x) < f(x_t)$ is encountered, set $x_{t+1} := x$
 - If $f(x) < f(x^*)$, set $x^* := x$ and $\Theta^* := \Theta_k$
 - If a whole exploration yields no better solution then set x_{t+1} by probability, δ := 1
- Step3: temperature update
 - Occasional increment rule: if $\delta = 1$, set $\Theta_{t+1} := \max\{\Theta_t/2, \Theta^*\}$, $\delta := 0$ and k := k+1
 - Normal decrement rule: if $\delta = 0$, set $\Theta_{t+1} := \Theta_t/[(n\beta + n\sqrt{t})\Delta_{\max}\Delta_{\min}]$
 - Stopping criteria: Set t:= t + 1. If k = k₃, stop!
 - Otherwise, go to Step 2

Computational Experiments

- Results on 14 Instances
- Not competative

		Instance	T^	Best known	Time	Gap			
	solution value								
▶ R	Rarelly identifies best solution	E051-05e	528,00	524,61	167,40	0,65%			
	•	E076-10e	838,62	835,26	6434,30	0,40%			
		E101-08e	829,80	826,14	9334,00	0,44%			
• Up	Lin to > 400/ above boot known	E101-10c	826,00	819,56	632,00	0,79%			
	Up to >12% above best known	E121-07c	1176,00	1042,11	315,80	12,85%			
		E151-12c	1058,00	1028,42	5012,30	2,88%			
		E200-17c	1378,00	1291,45	2318,10	6,70%			
Av	vg. Gap ≈ 2,1%	D051-06c	555,43	555,43	3410,20	0,00%			
	Avg. Oap ~ 2,170	D076-11c	909,68	909,68	626,50	0,00%			
		D101-09c	866,75	865,94	957,20	0,09%			
• There		D101-11c	890,00	866,37	305,20	2,73%			
	There are better heuristics	D121-11c	1545,98	1541,14	7622,50	0,31%			
		D151-14c	1164,12	1162,55	84301,20	0,14%			
		D200-18c	1417,85	1395,85	5708,00	1,58%			